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A fuzzy programming method for deriving priorities
in the analytic hierarchy process
L Mikhailov

UMIST, Manchester, UK

The estimation of the priorities from pairwise comparison matrices is the major constituent of the Analytic Hierarchy
Process (AHP). The priority vector can be derived from these matrices using different techniques, as the most commonly
used are the Eigenvector Method (EVM) and the Logarithmic Least Squares Method (LLSM). In this paper a new Fuzzy
Programming Method (FPM) is proposed, based on geometrical representation of the prioritisation process. This method
transforms the prioritisation problem into a fuzzy programming problem that can easily be solved as a standard linear
programme. The FPM is compared with the main existing prioritisation methods in order to evaluate its performance. It is
shown that it possesses some attractive properties and could be used as an alternative to the known prioritisation methods,
especially when the preferences of the decision-maker are strongly inconsistent.
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Introduction

The Analytic Hierarchy Process (AHP) is one of the most

popular methods of the Multi-Criteria Decision Making

(MCDM). In the AHP the weights of criteria and the scores

of alternatives are not explicitly distinguished, as in the

direct assessment MCDM methods. The weights are

derived from judgement matrices of pairwise comparisons

of the importance of the criteria and the scores are gener-

ated from pairwise comparisons of the alternatives with

respect to a particular criterion at the upper level. The

elicitation process for both weights and scores is identical,

that is why they are often called priorities.

The estimation of priorities from pairwise comparison

matrices is the major constituent of the AHP. The priority

vector can be derived from the comparison matrices using

different techniques. The traditional method, proposed by

Saaty1 is the Eigenvector Method (EVM). Saaty proves that

the principal eigenvector of the comparison matrix can be

used as a priority vector for consistent and inconsistent

preferences.

Most other methods for deriving priorities in the AHP

are based on some optimisation approach. They introduce

an objective function, which measures the distance between

an `ideal' solution and the actual one. Then the problem of

priorities derivation is to minimise this objective function

subject to some additional constraints. Such optimisation

methods are the Direct Least Squares Method (DLSM),

minimising the Euclidean distance from the given compar-

ison matrix under additive normalisation constraints and

the Weighted Least Squares Method (WLSM), using a

modi®ed Euclidean norm as an objective function.2 The

Logarithmic Least Squares Method (LLSM) of Crawford

and Williams3 makes use of the multiplicative properties of

the pairwise comparison matrices and applies an optimisa-

tion procedure to minimise a logarithmic objective func-

tion, subject to multiplicative constraints. This method

gives an explicit solution, which is rather simple and

convenient from computational point of view.

Some authors use a goal programming approach to solve

the prioritisation problem. Between them we can reference

the logarithmic Goal Programming Method (GPM)

proposed by Bryson,4 which minimises a linear logarithmic

function subject to some linear constraints. Therefore far

the most appealing techniques for prioritisation in the AHP

are the EVM and the LLSM. Many researchers have

performed comparisons between these methods in order

to evaluate their performance and to favour one of them,

but their conclusions are often contradictory. Some authors

such as Crawford and Williams,3 Barzilai5 and Zahedi6

assert that the LLSM overperforms the EVM. Other

researchers claim that the EVM is inferior to the

LLSM.7,8 Takeda et al9 apply more comparison criteria

and test the main prioritisation methods with a great number

of randomly generated pairwise matrices. Their ®ndings are

that the LLSM is superior to the EVM in some cases and

equal in others.

An excellent comparison analysis between the

commonly used methods for deriving priorities is given
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in Golany and Kress.10 They conclude that there is no

prioritisation method that is superior to the other ones in all

cases. All methods have their advantages and drawbacks

and the choice of the prioritisation method should be

dictated by the objective of the analysis. This conclusion

justi®es our study in this area and our efforts to develop and

test a new approach for prioritisation in the AHP.

The main objective of this paper is to present new Fuzzy

Programming Method (FPM) for priorities derivation from

pairwise comparison matrices. The FPM is based on a

geometrical representation of the prioritisation process as

an intersection of fuzzy hyperlines and determines the

values of the priorities, corresponding to the point with

the highest measure of intersection. Therefore the FPM can

be considered as an optimisation approach for deriving the

best priority vector. Using such an approach, the prioritisa-

tion problem is reduced to a fuzzy programming problem

that can easily be solved as a standard linear program.

The FPM is further compared with the main prioritisa-

tion methods mentioned above. The comparison itself is of

secondary importance to this paper and serves only to

justify the proposed method and to evaluate its properties.

It is shown that the new FPM has some attractive proper-

ties, such as a natural consistency indicator, simplicity of

the computation algorithm, good precision and rank preser-

vation, and can be used as an alternative to the known

prioritisation methods.

The prioritisation methods in the AHP

In the AHP the decision problem is structured hierarchi-

cally at different levels, each level consisting of a ®nite

number of elements. The priorities represent the relative

importance of the decision elements at that level. For all

levels of the hierarchy the prioritisation of the elements is

carried out with respect to the elements of the upper level.

The elicitation of the priorities at a given level is performed

by pairwise comparisons. The pairwise comparison in the

AHP assumes that the decision-maker can compare any two

elements and to provide a numerical value of the ratio of

their relative importance.

Let us consider prioritisation of n elements

E1;E2; . . . ;En at the same level of hierarchy. Comparing

any two elements Ei and Ej, the decision-maker assigns the

value aij, which represents a judgement concerning the

relative importance of preference of decision element Ei

over Ej. If the element Ei is preferred to Ej then aij > 1.

Correspondingly, the reciprocal property aji � 1=aij for

j � 1; 2; . . . ; n; i � 1; 2; . . . ; n always holds.

Each set of comparisons for a level with n elements

requires n�nÿ 1�=2 judgements. In such a way a positive

reciprocal matrix of pairwise comparisons A � faijg 2 <nxn

is constructed. Then a priority vector w � �w1;
w2; . . . ;wn�T may be derived from this matrix. The set of

n relative priorities is normalised to sum of one, therefore

the number of independent normalised priorities is �nÿ 1�.
When the decision-maker is perfectly consistent in his

judgements then all elements aij have perfect values

aij � wi=wj. In this case we have aij � aikakj for all

i; j; k � 1; 2; . . . ; n. Then the pairwise comparison matrix

A is said to be consistent and can be represented as

Ac � fwi=wjg. The consistent priorities are unique and

readily available by taking the elements in any column of

the comparison matrix Ac and then dividing each of them

by the sum of all elements of the column.

However, the decision-maker's evaluations aij are

frequently not perfect, they are only estimations of the

exact ratios wi=wj. Such inconsistent judgements are more

common and then A is an inconsistent matrix, which can be

considered as a perturbation of the consistent one Ac. The

inconsistent priorities are not unique and should be derived

using some estimation technique. We will brie¯y describe

the main methods for priorities derivation from pairwise

comparison matrices that are used in the comparison

analysis to follow.

Eigenvector method (EVM)

This is the original Saaty's approach to derive the priorities

in the AHP. The EVM is based on the fact that small

perturbations of the elements aij from the perfect ratios

wi=wj lead to small perturbations of the eigenvalues of the

comparison matrix A around the eigenvalues of the consis-

tent one Ac. Using the Frobenius Theorem, Saaty1 proves

that the principal eigenvector of A can be used as the

desired priority vector. So the EVM is based on solving the

equation:

Aw � lmaxw; lmax � n: �1�
For small deviations around the perfect evaluations this

approach gives reasonably good approximation of the prior-

ity vector, but when the inconsistency of the decision-

maker's preferences is large, then the solutions are not

satisfactory.

Least squares methods

The Direct Least Squares Method (DLSM), proposed by

Chu et al2 is based on the assumption that the elements of

the priority vector w � �w1;w2; . . . ;wn�T should best

satisfy the property aij � wi=wj. Therefore the priorities

assessment is formulated as a constrained optimisation

problem:

min
P

i

P
j

�aij ÿ wi=wj�2 �2�

subject toPn
i�1

wi � 1;wi > 0; i � 1; 2; . . . ; n: �3�
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The above nonlinear optimisation problem has no special

tractable form and generally has multiple solutions.2,10 In

order to eliminate the drawbacks of the DLSM, Chu et al2

modify the objective function (2) in the following form:

min
P

i

P
j

�wi ÿ aijwj�2 �4�

The Weighted Least Squares Method (WLSM) consists in

minimisation of (4), subject to the additive normalising and

non-negative constraints given by (3).

The WLSM reduces the solution of the above optimisa-

tion problem to a system of linear equations that can easily

be solved. It is shown in Blankmeyer11 that the WLSM

provides a unique solution, unlike the DLSM. That is why

the WLSM is chosen for the comparison analysis in this

paper.

Logarithmic least squares method (LLSM)

The LLSM, also known as Geometric Mean Method

(GMM) is a variation of the above least square methods

and it is widely used due to its simplicity. The LLSM

minimises the objective functionP
i

P
j

�ln aij ÿ ln wi � ln wj�2 �5�

subject to the multiplicative normalising constraintsQn
i�1

wi � 1;wi > 0; i � 1; 2; . . . ; n: �6�

Crawford and Williams3 have proved the validity of this

method. They have shown, that the solution is unique and

can be found as the geometric mean of the columns of A,

wi �
Qn
j�1

�aij�1=n; i � 1; 2; . . . ; n: �7�

Goal programming method (GPM)

This method, proposed by Bryson4 uses the consideration,

that the priorities are desired to satisfy the equalities

wi

wj

 !
d�ij
dÿij

 !
� aij; i � 1; 2; . . . ; n; j � 1; 2; . . . ; n; j > i;

�8�
where d�ij � 1 and dÿij � 1 are additional deviation variables,

which cannot both be greater than 1. The priorities are

obtained as solutions of the following linear goal program-

ming problem:

min
Pn
i�1

Pn
j>1

�log d�ij � log dÿij � �9�

subject to

log wi ÿ log wj � log d�ij ÿ log dÿij � log aij;

i � 1; 2; . . . ; n; j � 1; 2; . . . ; n; j > i; �10�
where all log d�ij and log dÿij are non-negative.

Geometrical representation of the priorities derivation

problem

Generally, when we have n priorities, we need n�nÿ 1�=2
evaluation elements aij, each one of them being estimation

of the real ratio wi=wj. If the reciprocal matrix of pair-

wise comparisons A � faijg 2 <nxn is consistent, then

aijwj ÿ wi � 0 for all i � 1; 2; . . . ; n; j � 2; 3; . . . ; n;
j > i. This can be represented as a system of linear

equations:

Rw � 0; �11�
where the matrix R 2 <mxn;m � n�nÿ 1�=2 is obtained

from the elements of the matrix A. Therefore we can

formulate the problem of priorities assessment in the follow-

ing way: Find a positive priority vector w that satis®es (11)

and the normalisation equationPn
i�1

wi � 1; wi > 0; i � 1; 2; . . . ; n: �12�

Each row of (11) Rjw � 0 de®nes a hyperplane in the n-

dimensional priority space. We shall denote the jth hyper-

plane as

Hj�w� � fwjRjw � 0g; j � 1; 2; . . . ;m: �13�
Since the solution of the prioritisation problem must lie

on the simplex hyperplane H0�w� � fwjw1 � w2 � � � ��
wn � 1g, the intersections of the hyperplanes Hj�w� with

H0�w� should be considered.

The intersection between each hyperplane Hj�w� and

H0�w� is de®ned as a hyperline Lj�w�
Lj�w� � Hj�w� \ H0�w�; j � 1; 2; . . . ;m: �14�

Then the exact solution of the problem (if it exists) can be

represented as a common intersectionP�w� of all hyperlines

Lj�w� on H0�w�:
P�w� � L1�w� \ L2�w� \ � � � \ Lm�w�: �15�

For the perfectly consistent case when aij � aikakj; 8i; k; j,

the common intersection P�w� of all hyperlines Lj�w� on the

simplex hyperplane is not empty and contains only one

point, which gives the exact solution of (11) and (12),

P�w� � fw*g;w* � �w1*;w2*; . . . ;wn*�T. In the inconsistent

case a common intersection point of all hyperlines on H0�w�
does not exist, so the intersection set is empty, P�w� � 0.

Then it is desirable to ®nd such values of w, so that (11) is

approximately satis®ed, that is, Rw � 0.
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Before describing our approach to ®nd such approximate

solution, let us illustrate the geometrical representation of

the prioritisation problem, using the following example.

Example 1. Three-dimensional prioritisation problem

Consider a three-dimensional prioritisation problem with

unknown priorities w1;w2 and w3. The pairwise compar-

ison matrix A is

A �
1 a12 a13

1=a12 1 a23

1=a13 1=a23 1

24 35 �16�

We have to evaluate the three ratios, a12; a13 and a23. Then

we can represent (11) as a system of three equations:

w1a12w2 � 0; w1 ÿ a13w3 � 0; w2 ÿ a23w3 � 0:

�17�
These equations de®ne three planes in the 3-dimensional

priority space, which intersect the simplex plane

fw1 � w2 � w3 � 1;wi > 0; i � 1; 2; 3g: The three intersec-

tion lines might intersect each other at one single point or at

three different points on the simplex plane. For the perfectly

consistent case we have a13 � a12a23 and an exact solution

of the above problem exists, represented by the common

intersection point of the three intersection lines on the

simplex plane (Figure 1).

Let the comparison elements be a12 � 2; a13 � 6 and

a23 � 3. For these values of the elements the corresponding

matrix A is consistent and the exact solution is given by

w* � �0:6; 0:3; 0:1�T.

If the matrix A is inconsistent, an exact solution, satisfy-

ing simultaneously all three equations in (17) does not

exist, hence the intersection lines have no common inter-

section point. Approximate solutions of the problem could

be found in the triangular area or at its vertices, shown on

Figure 2 as a shaded area. The EVM and all least square

methods give solutions inside this triangular area, while the

GPM provides solution located at one of the vertices of this

simplex.

A fuzzy approach to priorities derivation

Our approach for determination of the priority vector is

based on the above geometrical representation of the

prioritisation problem. The main idea behind this approach

is to represent the hyperlines Lj�w� as fuzzy lines and to

®nd the solution of the approximate priority assessment

problem, as an intersection point of these fuzzy lines.

The following notation and de®nitions are used to

describe the fuzzy method for priority assessment. A

fuzzy set ~A is de®ned as a set of ordered pairs
~A � f�x;m ~A�x��jx 2 X g, where m ~A�x� is a membership func-

tion, which maps each element x to a real value in [0,1]. The

crisp sets of the elements x 2 X that belong to the fuzzy set
~A to degree of a are called a-level sets (or simply a-cuts) of
~A, and are de®ned as A�a� � fx 2 X jm ~A�x� � ag. Using this

concept each fuzzy set ~A can be represented as a sequence of

sets A�ai�; 0 � a1 < a2 < � � � ak � 1. For a � 0 the corre-

sponding a-level A�0� represents the support of the fuzzy set
~A, while A�1� is the core of ~A.

The core of a normal fuzzy set is nonnull subset. In this

paper we will consider a speci®c form of normal fuzzy sets,

which are called fuzzy numbers. The normal fuzzy set ~N is a

triangular fuzzy number if it has a piecewise continuous

membership function m ~N �x�:12

1. A continuous mapping from < to the closed interval

[0,1];

2. m ~N �x� � 0 for all x 2 �ÿ1; a� and for all x 2 �c;�1�;
3. Strictly increasing on �a; b� and strictly decreasing on

�b; c�;
4. m ~N �x� � 1 for x � b.

where a < b < c are real numbers.Figure 1 Graph of consistent preferences.

Figure 2 Graph of inconsistent preferences.
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The a-level sets of the fuzzy number ~N are closed

intervals, whereas ~N �ak� � ~N �ak1 � � � � � ~N �0�.

A fuzzy intersection hyperline

The intersection between the hyperplanes Hj�w� and H0�w�
is de®ned as a fuzzy intersection hyperline ~Lj on H0�w�,
which is a triangular fuzzy number

~Lj � f�w;m ~Lj
�w��jw 2 <n�g;

characterised by its linear membership function m ~Lj
�w�

m ~Lj
�w� �

0; Rjw < ÿdÿj

1� Rjw

dÿj
; Rjw 2 �ÿdÿj 0�

1; Rjw � 0

1ÿ Rjw

d�j
; Rjw 2 �0; d�j �

0; Rjw > d�j
w1 � w2� � � �wn � 1

8>>>>>>>>>><>>>>>>>>>>:
�18�

This triangular membership function is a modi®cation of

that initially suggested by Zimmermann13 for solving of

fuzzy linear programming problems. The membership func-

tion m ~Lj
�w� equals 1 when the corresponding crisp equation

of the plane Rjw � 0 is fully satis®ed. This function is equal

to 0 when the plane equation is strongly violated and it takes

values between 0 and 1 if it is approximately satis®ed (note

that the additive normalisation constraint always holds). The

membership function is linearly increasing over the interval

�ÿdÿj ; 0� and linearly decreasing over the interval �0; d�j �
The values of the left and right tolerance parameters dÿj and

d�j represent the admissible interval of approximate satisfac-

tion of the crisp equality Rjw � 0 on the simplex hyper-

plane.

An intersection region of the fuzzy hyperlines

Let ~L1 and ~L2 be two fuzzy hyperlines on the simplex

hyperplane, which cores are denoted by l1�w� and l2�w�. In

general, these fuzzy hyperlines intersect at a fuzzy region
~P � ~L1 \ ~L2, whose membership function can be de®ned as

in Buckley14:

m ~P�w� � min�m ~L1
�w�;m ~L2

�w��: �19�
The intersection of two fuzzy lines on the simplex plane

H0�w� in the three-dimensional priority case is shown on

Figure 3. If the cores of the hyperlines l1�w� and l2�w�
intersect, as in Figure 3(a) the fuzzy intersection region is

not empty and contains many points with different degrees

of membership in this region. It should be noted that the

intersection region ~P of two hyperlines with parallel cores

l1�w� and l2�w� could also be nonempty if the spreads of

these lines, given by their parameters dÿj and d�j are large

enough as shown in Figure 3(b). In this case the fuzzy

intersection region is itself a fuzzy hyperline.

Similarly, the intersection of m fuzzy lines is de®ned as a

fuzzy region ~P � ~L1 \ ~L2 \ � � � \ ~Lm, which is a fuzzy set

with a membership function

m ~P�w� � min�m ~L1
�w�;m ~L2

�w�; . . . ;m ~Lm
�w��: �20�

If the spreads of the membership functions of the fuzzy

lines, given by the left and right tolerance parameters dÿj and

d�j are large enough, then the fuzzy set ~P is not empty.

Theorem 1 The intersection region of m fuzzy lines is a

convex fuzzy set.

Proof Consider a non-empty fuzzy intersection region ~P.

Let w1 and w2 be two points of the a-level set of

P�a�;w1 2 P�a�;w2 2 P�a�. Then

m ~Lj
�w1� � a and m ~Lj

�w2� � a for all j � 1; 2; . . . ;m:

Consider a new point w � bw1 � �1ÿ b�w2; 0 < b < 1.

Since all m ~Lj
�w� are de®ned in (18) as convex functions,

we have

m ~Lj
�w� � m ~Lj

�bw1 � �1ÿ b�w2� � min�m ~Lj
�w1�;

m ~Lj
�w2�� � a for all j � 1; 2; . . . ;m:

Therefore

m ~P�w� � min�m ~L1
�w�;m ~L2

�w�; . . . ;m ~Lm
�w�� � a:

It follows that the new point w 2 P�a�, hence the intersec-

tion region ~P is a convex fuzzy set. j

Measure of intersection of the fuzzy hyperlines

The measure of intersection of two fuzzy hyperlines ~L1 and
~L2 is de®ned by Buckley14 as

m � max
<n
fmin�m ~L1

�w�;m ~L2
�w��g �21�

For a given point w 2 <n on H0�w� the measure m represents

the height of the intersection region of the fuzzy lines ~L1 and
~L2. If ~P is an empty set then m � 0. If the fuzzy intersection

region is a fuzzy hyperline then 0 < m � 1, and m is equal to

1 at the intersection point between the core lines.

Figure 3 Intersection of two (a) perpendicular, and (b) parallel
fuzzy lines on the simplex plane.
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Since the fuzzy intersection region is a convex set we can

de®ne the measure of intersection m of m fuzzy lines by

analogy as

m � max
<n
fmin�m ~L1

�w�;m ~L2
�w�; . . . ;m ~Lm

�w��g �22�

Therefore the problem of priorities assessment can be

viewed as an optimisation task for selection of a priority

vector w* in the intersection region, which maximises the

measure of intersection.

It should be noted that (22) is similar to the maximising

decision in the decision making in fuzzy environment with

fuzzy goals and fuzzy constraints, proposed by Bellman and

Zadeh.15 Since the membership function and the additive

normalising constraint are linear, our prioritisation problem

could be seen as the fuzzy linear programming problem,

studied by Zimmermann.13

As in the fuzzy linear programming we can transform

(22), using (18) in the form

m � max
w

min 1ÿ R1w

d�1

� �
; 1� R1w

dÿ1

� �
; . . . ;

��
� 1ÿ Rmw

d�m

� �
; 1� Rmw

dm

� ���
�23�

where the normalisation condition
Pn

i�1 wi � 1 is satis®ed.

The formulation of the max-min problem given by (23)

is equivalent to the following linear program:

max m

subject to

md�j � Rjw � d�j ;

mdÿj ÿ Rjw � dÿj j � 1; 2; . . . ;m; 1 � m � 0;Pn
i�1

wi � 1;wi > 0; i � 1; 2; . . . ; n:

�24�

The FPM transforms the prioritisation problem into the

linear program (24) that can easily be solved by the standard

simplex method. It should be noted that the above equations

could be derived without geometrical representations, if the

initial prioritisation problem were directly formulated as a

fuzzy programming problem. The geometrical considera-

tions however will give the reader a better understanding of

the main idea of the proposed prioritisation method.

The measure of intersection m is a natural consistency

index of the FPM. Its value however depends on the

tolerance parameters. For the practical implementation of

the FPM it is reasonable all these parameters to be set equal.

Comparison analysis of the fuzzy programming method

Let us consider again the problem of elicitation of three

priorities, described in Example 1 from the previous

section. In order to illustrate the solution of this problem

by the proposed FPM, we can set d�j � dÿj � 1; j � 1; 2; 3,

and to formulate the corresponding linear program, (24) as:

max m

subject to

m� �w1 ÿ a12w2� � 1;

mÿ �w1 ÿ a12w2� � 1;

m� �w1 ÿ a13w3� � 1;

mÿ �w1 ÿ a13w3� � 1;

m� �w2 ÿ a23w3� � 1;

mÿ �w2 ÿ a23w3� � 1;

w1 � w2 � w3 � 1;wi > 0; i � 1; 2; 3:

Let the comparison elements be a12 � 2; a13 � 5 and

a23 � 3. For these values of the elements the corresponding

matrix A, (16) is inconsistent, so only approximate priorities

can be obtained.

The values of the priorities derived by the FPM for this

example are given in Table 1 and are compared with the

solutions of the Saaty's EVM, LLSM, WLSM and GPM.

The comparison is carried out, using the Euclidean distance

criterion10:

E � P
i

P
j

aij ÿ wi

wj

� �2
" #1=2

�25�

The largest eigenvalue in the Saaty's EVM solution is

lmax � 3:004, which suggests that the comparison matrix

is very slightly inconsistent. The Saaty's consistency index

is CI � 0.002, and the consistency ratio is CR �
0:003 < 0:1 (0.1 is the maximum allowable CR for the

EVM). The consistency index m of the FPM for this problem

is also very close to unity, m � 0:972.

From Table 1 it is seen that the FPM gives the best

approximation to the initial preferences, followed by the

WLSM. It should be noted that the EVM and LLSM derive

equal priorities. This result is not surprising, since in the

three-dimensional case the normalised geometric mean and

the eigenvector are identical, as it is shown in Crawford and

Williams.3

The comparison matrix used in this example is very close

to the consistent one (when a13 � 6), that is why the

priorities derived by all methods are very close. In order

to perform better comparative analysis of the proposed

FPM with the other methods for prioritisation, we have

Table 1 Comparison of the prioritisation methods

Solution method w1 w2 w3
w1

w2

w1

w3

w2

w3
E

FPM 0.583 0.306 0.111 1.909 5.250 2.750 0.365
EVM 0.582 0.309 0.109 1.882 5.313 2.823 0.379
LLSM 0.582 0.309 0.109 1.882 5.313 2.823 0.379
WLSM 0.585 0.302 0.113 1.937 5.189 2.679 0.377
GPM 0.588 0.294 0.118 2.000 5.000 2.500 0.500
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generated a number of three-dimensional comparison

matrices, (26)

A �
1 2 a13
1
2

1 3

1=a13
1
3

1

24 35 �26�

All matrices have ®xed values of a12 � 2 and a23 � 3, only

the third element a13 varies in a wide range between 0.01

and 100, therefore permitting high degrees of inconsistency.

The value of the criterion E, (25) as a function of the

parameter a13 are given in Table 2. In the consistent case all

prioritisation methods give the same solution and E equals

zero. For very great values of the parameter a13, the EVM

and the LLSM are overperformed by all other methods.

When a13 < 6, either the EVM (LLSM) or the FPM

provide the best solution. For a13 > 6 the FPM always

gives the best approximation to the initial preferences,

while the WLSM ranks second. It should be noted that

the FPM is the best performer when the matrix A is highly

inconsistent.

The consistency index m of the FPM and the Saaty's ratio

CR are graphically represented on Figure 4 as a function of

the parameter a13. It is seen that the FPM is more robust

than the EVM, therefore it can be used for deriving

priorities from very inconsistent comparison matrices.

Rank preservation

Another important property of the prioritisation methods is

their ability to preserve the ordinal preferences, which are

implicitly expressed by the elements of the comparison

matrix A.10,16 According to the Saaty and Vargas's de®ni-

tions, a prioritisation method is said to preserve rank weakly

if aij � 1 implies wi � wj. The method of solution preserves

rank strongly if aik � ajk for all k implies wi � wj.

Saaty and Vargas compare the rank preservation proper-

ties of the EVM, LLSM and LSM and prove that all three

methods preserve rank strongly. In fact the strong rank

preservation is a row dominance condition and any accep-

table prioritisation method must possess this property.

In our comparison matrix given by (26), the second row

A2 dominates the third one A3, that is, A2 � A3 for all

values of the parameter a13 � 2. As it can be seen from

Tables 3 and 4, all methods give w2 > w3 for a13 � 2.

When a13 � 3, the ®rst row A1 dominates the second one

A2, so we have a strong row dominant matrix, where

A1 � A2 � A3. Tables 3 and 4 show that all compared

methods preserve rank strongly, since their ranking is

w1 > w2 > w3 for all values of the parameter a13 � 3.

If the comparison matrix A is consistent, then all

prioritisation methods preserve rank weakly, because in

the consistent case the inequality wi � wj implies aij � 1.

But if the matrix A is inconsistent then the weak rank

preservation is not guaranteed.

In their comparative study Golany and Kress10 showed

that the known prioritisation methods do not preserve rank

Table 2 Euclidean distance of the compared methods

E

a13 FPM EVM LLSM WLSM GPM

0.01 2.341a 3.179 3.179 3.430 5.990b

0.1 2.299a 2.700 2.700 3.287 5.900b

1 1.907 1.816a 1.816a 2.291 5.000b

2 1.500 1.416a 1.416a 1.644 4.000b

3 1.112 1.078a 1.078a 1.171 1.500b

4 0.735a 0.737 0.737 0.762 1.000b

5 0.365a 0.379 0.379 0.377 0.500b

6 0.000 0.000 0.000 0.000 0.000
7 0.362a 0.399 0.399 0.378 0.500b

8 0.721a 0.817 0.817 0.758 1.000b

9 1.079a 1.252 1.252 1.142 1.500b

10 1.436a 1.703 1.703 1.531 2.000b

20 4.979a 6.847 6.847 5.570 10.198b

100 33.246a 61.109b 61.109b 39.561 47.000

aRepresents the best solution.
bRepresents the worst solution.

Figure 4 Consistency index of the FPM and the EVM.

Table 3 Priorities derived by the EVM (LLSM) and the FPM

EVM (LLSM) FPM

a13 w1 w2 w3 w1 w2 w3

0.01 0.059 0.247 0.694 0.376 0.375 0.249
0.1 0.181 0.355 0.463 0.384 0.372 0.244
1 0.407 0.370 0.224 0.450 0.350 0.200
2 0.484 0.349 0.168 0.500 0.333 0.167
3 0.528 0.333 0.140 0.536 0.321 0.143
4 0.558 0.320 0.122 0.563 0.313 0.125
5 0.582 0.309 0.109 0.583 0.306 0.111
6 0.600 0.300 0.100 0.600 0.300 0.100
7 0.615 0.292 0.093 0.614 0.295 0.091
8 0.628 0.285 0.086 0.625 0.292 0.083
9 0.639 0.279 0.081 0.635 0.288 0.077

10 0.649 0.274 0.077 0.643 0.286 0.071
20 0.710 0.237 0.053 0.688 0.271 0.042

100 0.819 0.160 0.021 0.736 0.255 0.010

L MikhailovÐA fuzzy programming method for deriving priorities in the analytic hierarchy process 347



weakly, especially when the degree of inconsistently is

greater. This is also shown by our results, given in Tables 3

and 4.

It can be seen that w1 increases and w3 decreases

monotonically as a13 increases for the EVM (LLSM) and

FPM, which however is not valid for both the GPM and the

WLSM. Since a12 � 2 and a23 � 3, the weak rank preser-

vation condition implies w1 > w2 and w2 > w3 for all

a13 > 1. From the results represented in Tables 3 and 4

we can conclude that all compared methods preserve rank

weakly for a13 � 1, so that w1 > w2 > w3.

When a13 < 1, the weak rank preservation condition

implies w3 > w1, but since both a12 and a23 are greater

than one we have an obvious contradiction, that is,

w1 > w2 > w3 > w1 and it is not possible to ®nd priorities,

satisfying simultaneously all weak rank preservation condi-

tions. As it can be seen from Tables 3 and 4, for a13 < 1 the

ranking of the EVM (LLSM) is reversed, that is,

w3 > w2 > w1. The FPM, GPM and WLSM preserve the

same ranking w1 > w2 > w3 for all values of the parameter

a13.

In order to evaluate the weak rank preservation proper-

ties of all methods, we can use the Minimum Violations

criterion (also called Element Preference Reversal, Golany

and Kress10). It measures the sum of all violations, occur-

ring when an element Ei is preferred to Ej in the pairwise

comparison �aij > 1�, but Ej receives a larger weight in the

generated priority vector (wj > wi).

According to this criterion, the ranking w3 > w2 > w1,

obtained by the EVM (LLSM) for a13 < 1 has two viola-

tions �w2 > w1 and w3 > w2, while a12 � 2and a23 � 3).

The ranking of the FPM, the GPM and the WLSM is

w1 > w2 > w3 and it has only one violation �w1 > w3,

while a13 < 1�.
The rank preservation is another important property of

the proposed FPM, shown by this experiment.

Example 2. Wealth-of-nations problem

The Saaty's wealth-of-nations problem1 has been used by

many authors for evaluation of different prioritisation

methods. The wealth-of-nations pairwise comparison

matrix is given in Table 5. It represents the responses of

an economic expert, who compress the wealth of seven

countries using the pairwise comparisons within the Saaty's

scale 1
9

± 9.

The priorities generated by the ®ve compared methods

are represented in the upper part of Table 6. It is seen that

all methods give different priorities, but identical ®nal

rankings of the wealth of the nations. In this case all

methods preserve the same rank since the comparison

matrix is rather consistent, its consistency index is

CI � 0:101 and the consistency ratio is CR� 0:077. The

consistency index of the FPM for this problem is

m � 0:986.

The last row of Table 6 represents the values of the

Euclidean distance criterion, (25) for all considered prior-

itisation methods. In this particular problem the best

performer is the GPM, being slightly better than the

WLSM and FPM, while the most popular prioritisation

methods EVM and LLSM give the worst results.

The comparison analysis between the FPM and the other

prioritisation methods does not pretend to be a comprehen-

sive one. The main objective of this analysis is just to give

an idea of the performance of this new method and to show

its features. Presently an extensive analysis has been

carried out with randomly generated matrices of higher

order, taking into account more evaluation criteria. The

preliminary results con®rm that the FPM method can be

Table 4 Priorities derived by the GPM and the WLSM

GPM WLSM

a13 w1 w2 w3 w1 w2 w3

0.01 0.600 0.300 0.100 0.500 0.350 0.150
0.1 0.600 0.300 0.100 0.499 0.348 0.153
1 0.600 0.300 0.100 0.500 0.333 0.167
2 0.600 0.300 0.100 0.520 0.320 0.160
3 0.545 0.273 0.182 0.544 0.311 0.144
4 0.571 0.286 0.143 0.567 0.306 0.128
5 0.588 0.294 0.118 0.585 0.302 0.113
6 0.600 0.300 0.100 0.600 0.300 0.100
7 0.609 0.304 0.087 0.612 0.299 0.089
8 0.615 0.308 0.077 0.622 0.298 0.080
9 0.621 0.310 0.069 0.630 0.297 0.073

10 0.625 0.313 0.063 0.636 0.297 0.067
20 0.625 0.313 0.063 0.668 0.297 0.035

100 0.662 0.331 0.007 0.694 0.299 0.007

Table 5 Wealth-of-nations matrix

Country US USSR China France UK Japan W Germany

US 1 4 9 6 6 5 5

USSR 1
4

1 7 5 5 3 4

China 1
9

1
7

1 1
5

1
5

1
7

1
5

France 1
6

1
5

5 1 1 1
3

1
3

UK 1
6

1
5

5 1 1 1
3

1
3

Japan 1
5

1
3

7 3 3 1 2

W Germany 1
5

1
4

5 3 3 1
2

1

Table 6 Comparison of the priorities for the wealth-of-nations
matrix

Country EVM LLSM WLSM GPM FPM

US 0.427 0.417 0.487 0.373 0.501
USSR 0.230 0.231 0.175 0.290 0.160
China 0.021 0.020 0.030 0.041 0.043
France 0.052 0.054 0.059 0.062 0.060
UK 0.052 0.054 0.059 0.062 0.060
Japan 0.123 0.128 0.128 0.096 0.1
W Germany 0.094 0.096 0.096 0.075 0.075
Euclidean distance E 13.708 14.206 10.381 8.847 10.888
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used as a worthy alternative of the existing prioritisation

methods in the AHP.

Conclusions

A new fuzzy programming method for deriving problems

in the AHP is proposed, based on fuzzy geometrical

representations of the prioritisation problem. The FPM is

as an optimisation method for prioritisation, since it derives

priorities that maximise the degree of intersection between

the fuzzy lines, approximately describing the human prefer-

ences. This method transforms the prioritisation problem

into a standard linear program.

Incomprehensive numerical comparison with other

known methods for priority assessment is performed to

justify the properties of the FPM. The comparison analysis

shows that the FPM overperforms some of the existing

methods, especially in highly inconsistent cases.

The new method has some attractive properties, such as a

natural consistency index, simplicity of the computation

algorithm, good rank preservation and precision and can be

used as an alternative to the known prioritisation methods.

It can be modi®ed and applied for interval comparisons and

group decision making, which are the directions of our

future research.
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